The best magazine
Ecologic Niche Modeling and Spatial Patterns of Disease Transmission
Abstract and Introduction
Abstract
Ecologic niche modeling (ENM) is a growing field with many potential applications to questions regarding the geography and ecology of disease transmission. Specifically, ENM has the potential to inform investigations concerned with the geography, or potential geography, of vectors, hosts, pathogens, or human cases, and it can achieve fine spatial resolution without the loss of information inherent in many other techniques. Potential applications and current frontiers and challenges are reviewed.
Introduction
The emerging and evolving field of landscape epidemiology has explored techniques for summarizing spatial patterns in disease transmission data. These techniques seek spatial patterns at some level of generalization or averaging and then summarize overall patterns and trends in the form of a smoothed surface. Techniques typically applied to these challenges include splining and kriging, as well as smoothing based on average values within coarser-grained windows across landscapes. These approaches always involve some loss of resolution to smooth the surfaces, and some degree of averaging is involved (Figure 1).
(Enlarge Image)
Figure 1.
Hypothetical example of a species' known occurrences (circles) and inferences from that information. The middle panel shows the pattern that would result from a surface-fitting or smoothing algorithm, and the bottom panel shows the ability of ecologic niche modeling approaches to detect unknown patterns in biologic phenomena based on the relationship between known occurrences and spatial patterns in environmental parameters. GIS, geographic information system.
Although these approaches provide simple summaries of spatial patterns, they do not often succeed in illustrating true levels of complexity and heterogeneity that characterize biologic landscapes. Disease transmission cycles are composite phenomena that represent interactions between sets of species: hosts, vectors, and pathogens. The complexities of spatial occurrence of disease will represent the combination of complexities of occurrence of the component species, as well as effects of chance events. Thus, broad-trend generalizations such as those produced using the smoothing techniques mentioned above are unlikely to lead to novel insights and new understanding of complex systems. The approach advocated in this report improves the pattern summary by estimating species-specific ecologic niches. In this way, the complex influences of environmental variation on species' distributions and their translation into disease transmission patterns can be appreciated in greater detail (Figure 1).
Source: ...